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Abstract
Following a recent work by Robnik and Romanovski (2006 J. Phys. A: Math.
Gen. 39 L35, 2006 Open Syst. Inf. Dyn. 13 197–222), we derive an explicit
formula for the universal distribution function of the final energies in a
time-dependent 1D harmonic oscillator, whose functional form does not
depend on the details of the frequency ω(t) and is closely related to the
conservation of the adiabatic invariant. The normalized distribution function
is P(x) = π−1(2µ2 − x2)−

1
2 , where x = E1 − Ē1; E1 is the final energy, Ē1

is its average value and µ2 is the variance of E1. Ē1 and µ2 can be calculated
exactly using the WKB approach to all orders.

PACS numbers: 05.45.−a, 45.20.−d, 45.30.+s, 47.52.+j

In a recent work [1, 2], Robnik and Romanovski studied the energy evolution in a general
1D time-dependent harmonic oscillator and the closely related questions of the conservation
of adiabatic invariants [3–7]. Starting with the ensemble of uniformly distributed (w.r.t. the
canonical angle variable) initial conditions on the initial invariant torus of energy E0, they
calculated the average final energy Ē1, the variance µ2 and all the higher moments. The even
moments are powers of µ2, whilst the odd moments are exactly zero, because the distribution
function P(E1) of the final energies E1 is an even function w.r.t. Ē1. In this letter we derive
an explicit formula for P(E1), namely we shall derive

P(E1) = Re
1

π
√

2µ2 − x2
, (1)

where x = E1 − Ē1, and Re denotes the real part, so that (1) is zero for |x| > µ
√

2. We do this
by using the exact results for the higher (even) moments and by employing the characteristic
function f (y) of P(x).
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The dynamics of our system is described by the Newton equation

q̈ + ω2(t)q = 0, (2)

which is generated by the system’s Hamilton function H = H(q, p, t), whose numerical
value E(t) at time t is precisely the total energy of the system at time t, and in the case of a
1D harmonic oscillator this is

H = p2

2M
+

1

2
Mω2(t)q2, (3)

where q, p,M,ω are the coordinate, the momentum, the mass and the frequency of the linear
oscillator, respectively.

The dynamics is linear in q, p, as described by (2), but nonlinear as a function of ω(t)

and is therefore subject to the nonlinear dynamical analysis. By using the indexes 0 and 1, we
denote the initial (t = t0) and final (t = t1) values of the variables.

The transition map � maps initial conditions (q0, p0) onto the final conditions (q1, p1):

� :

(
q0

p0

)
�→

(
q1

p1

)
=

(
a b

c d

)(
q0

p0

)
(4)

with det(�) = ad − bc = 1, and a, b, c, d can be calculated as shown in [1, 2]. Let
E0 = H(q0, p0, t = t0) be the initial energy and E1 = H(q1, p1, t = t1) be the final energy.
Introducing the new coordinates, namely the action I = E/ω and the angle φ, and assuming
the uniform distribution of initial angles φ over the period 2π , we can immediately calculate
the final average energy Ē1 and the variance

µ2 = (E1 − Ē1)2 = E2
0

2

[(
Ē1

E0

)2

− ω2
1

ω2
0

]
. (5)

It is shown in [2] that for an arbitrary positive integer m, we have (E1 − Ē1)2m−1 = 0 and

(E1 − Ē1)2m = (2m − 1)!!

m!
((E1 − Ē1)2)m. (6)

Thus, the 2mth moment of P(E1) is equal to (2m − 1)!!µ2m/m!, and therefore, indeed, all
moments of P(E1) are uniquely determined by the first moment Ē1. Obviously, P(E1) is in
this sense universal because it depends only on the average final energy Ē1 and the ratio ω1/ω0

of the final and initial frequencies and does not depend otherwise on any details of ω(t). It
has a finite support (Emin, Emax) = (Ē1 − µ

√
2, Ē1 + µ

√
2), it is an even distribution w.r.t.

Ē1 = (Emin + Emax)/2 and has an integrable singularity of the type 1/
√

x at both Emin and
Emax. This singularity stems from a projection of the final ensemble at t1 onto the curves of
constant final energies E1 of H(q, p, t1). Of course, all that we say here for the distribution
of energies E1 holds true also for the final action, the adiabatic invariant I1 = E1/ω1. It
is perhaps worthwhile mentioning that the moments of our distribution according to (6)
grow as 2m/

√
πm, whilst e.g. in the Gaussian distribution they grow much faster, namely as

2m�(m + 1/2)/
√

π , where �(x) denotes the gamma function.
Now we derive the distribution function (1) using the characteristic function f (y) of

P(x), namely

f (y) =
∫ ∞

−∞
eiyxP (x) dx. (7)

We immediately see that the nth derivative at y = 0 is equal to

f (n)(0) =
∫ ∞

−∞
(ix)nP (x) dx = inσn, (8)
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where σn is the nth moment of P(x) (in particular σ2 = µ2), i.e.

σn =
∫ ∞

−∞
xnP (x) dx. (9)

Using the Taylor expansion for f (y) = ∑∞
n=0

f (n)(0)

n! yn and expressions (6), we see at once

f (y) =
∞∑

m=0

i2mµ2m(2m − 1)!!

m!(2m)!
y2m, (10)

and using the formula (2m − 1)!! = (2m)!/(2mm!), we obtain

f (y) =
∞∑

m=0

(
−µ2y2

2

)m
1

(m!)2
, (11)

which can be summed and is equal to the Bessel function [8]

f (y) = J0(µy
√

2). (12)

Knowing the characteristic functions (7), (12), we now only have to invert the Fourier
transform, namely

P(x) = 1

2π

∫ ∞

−∞
e−iyxf (y) dy = 1

2π

∫ ∞

−∞
e−iyxJ0(

√
2µy) dy, (13)

which is precisely equal to (1) for |x| � µ
√

2 and is zero otherwise (see [8]). Indeed,
distribution (1) is normalized to unity as it must be. It is essentially the so-called β(1/2, 1/2)

distribution or also termed arc sine density [9], after shifting the origin of x to 1/2 and rescaling
of x. It is obvious that the distribution function does not depend on any details of ω(t) and is
in this sense universal for the 1D time-dependent harmonic oscillator in the case of uniform
canonical ensemble of initial conditions, i.e. uniform w.r.t. the canonical angle.

The rigorous method of calculating Ē1 and µ2 is explained in [1, 2]. In the general case
when (2) cannot be solved exactly, the WKB method [10] can be applied to all orders, as has
been explained in detail in [2].

Let us now present the direct algebraic derivation of the energy distribution function (1).
By definition, we have

P(E1) = 1

2π

4∑
i=1

∣∣∣∣ dφ

dE1

∣∣∣∣
φ=φj (E1)

, (14)

where we have to sum up contributions from all four branches of the function φ(E1). Let us
denote x = E1 − Ē1 so that we have

x = E0 (δ cos(2φ) + γ sin(2φ)) = µ
√

2 sin(2φ + ψ), (15)

where δ and γ are expressed in terms of a, b, c, d as shown in [1, 2], the variance is

µ2 = E2
0

2 (δ2+γ 2) and tan ψ = δ/γ so that φ = 1
2 arcsin x

µ
√

2
− ψ

2 . Therefore,
∣∣ dφi

dx

∣∣ = 1

2
√

2µ2−x2

for all four solutions i = 1, 2, 3, 4 and from (14) we get (1) at once.
The first derivation demonstrates the power of the approach employing the characteristic

function f (y) of P(x), giving us new insights, whereas the second one leads elegantly to
the final result, eliminating many parameters by a rather elementary substitution. In fact, this
second method is geometrically obvious by the following argument: in a phase space, the initial
distribution lies on an ellipse. The final distribution lies on a different ellipse with the same
area, with the points equidistributed in the canonical angle variable. This final ellipse intersects
the energy contours of the Hamiltonian, and thus after squeezing the final Hamiltonian so that
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its energy contours are circles, the desired probability distribution is simply the distribution of
radii of those circles through which the final ellipse passes.

In nonlinear systems, the entire theory expounded in [1, 2] must be reformulated and as
such it is an important open problem [11]. For the case of a separatrix crossing some interesting
numerical results have been obtained in [12], namely P(E1) has a substantial structure and is
by far not so simple as (1).
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